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FIG. 5. Comparison between experimental and numerical streamlines at slender configuration for Ra, = 
3.795 x 104, Pr = 0.707. a = 20mm, ci = 0.688, E, = 0.400. 
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NOMENCLATURE 

constants, 1 < j < 5; 
specific heat at constant pressure; 
dissipation-rate of turbulent kinetic energy; 

gravitational acceleration ; 
kinetic energy ; 

K, 

1, 
Nu, 
p, 

Pr, 
43 

thermal conductivity ; 

mixing length ; 
Nusselt number; 
production-rate of turbulent kinetic energy ; 
Prandtl number; 
heat flux; 
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t, time ; 
T, temperature; 
T max. maximum temperature at any time; 
T,* maximum temperature of the initial dis~ibution, 

T,i ; 
3-2, lowest temperature in the time interval 

considered ; 
Z, 
Z*. 

distance for the surface; 
defined such that 
gb(T, -T,)Z*3/va = 1. 

Subscripts 
D, dissipation; 
H, heat; 
1, initial ; 
k, turbulent kinetic energy ; 
m, momentum; 
s, surface ; 
si, initial surface; 
J, at large distance from the surface. 

Superscripts 
fluctuating component; 

-, time averaged ; 
-> nondimensional. 

Greek letters 
a, thermal diffusivity; 

thermal expansion coefficient ; 
eddy diffusjvity ; 
kinematic viscosity; 
density. 

1. INTRODUCTION 

VISKANTA and PARKIN [l] reported experimental results for 
the cooling of a pool of water in which a stable initial 
tem~rature dist~bution existed because of prior irradiation 
of the pool, after which the surface of the pool was exposed to 
a cold plate positioned slightly above the water surface. The 
history of the heat flow from the surface of the pool was 
reported, as that was determined from calorimeter measure- 
ments on the cold plate. The temperature distribution in the 
pool was determined by interferometry. Viskanta and Parkin 
showed that, taking as an initial temperature distribution that 
which existed at a time 90 s after the placement of the cold 
plate, when the deduced heat flux from the pool had become 
relativeiy constant, a satisfactory prediction of tem~rature at 
a time of 120s could be made by a turbulent model which 
incorporated a specification of a turbulent eddy diffusivity 
which depends in a complicated way on the temperature 
distribution and on the depth within the pool. 

AS an alternative, there are presented here similar pre- 
dictions of the temperature distribution in the pool, using 
one-equation and two-equation models for the turbulence 
with both conventional and with modified constants. 

2. SYSTEM AND EQUATIONS FOR THE 
ONE-EQUATION MODEL 

In the experiment of Viskanta and Parkin, initially the 
maximum temperature is the initial surface temperature T,, 
and the temperature diminishes with depth to a value 
T,, which exists at a depth at which the prior radiant heating 
had not altered the temperature of the pool. After cooling of 
the surface, the surface temperature decreases and the 
maximum temperature exists below the surface. Below the 
location of T,,,, T > T, because of the downward heat 
transport that occurs at the later times during the time 
interval considered. 

The temperature distribution is specified by the energy 
equation written for the assumed stationary water in the pool 

t?T 8 
- = ,(WEll)Z. 
dt 

(1) 

For the solution the eddy diffusivity ~a must be prescribed. 
The boundary condition at the surface is 

. 
z- = (x+e,)g (2) 

P 

with q,, prescribed. 
Also, T -+ T, as Z -+ Z,. 
The eddy diffusivity is obtained from a prescribed mixing 

length and the equation for the kinetic energy of the 
turbulence. This is 

dk a 
- = --(v+r,)g + P - D. 
at 

(3) 

For a situation of no mean motion, the production term P is 

-fig w’T’, or cHj?g(dT/&Z), effective only when aT/aZ is 
positive. The dissipation term D is defined in terms of the 
kinetic energy of the turbulence and a mixing length 

D=c,Y. (4) 

Conventionally, when there exists a momentum diffusivity, 
turbulent Prandtl numbers are defined as 

Pr, = “, PrH =: 5 
1 En 

The magnitude of em is defined as 

c, = C, klf2 I 

such that 

C, k”’ I C, k”’ t 

% = -K- 
Eff=p. 

f+H 

This much specification, together with a definition of the 
necessary constants and a prescription about the magnitude 
of the mixing length, together with boundary conditions for 
equation (3), enables the solution of the problem. The 
boundary conditions for equation (3) are taken to be 

k=O as Z-+KI and k=O at Z=O. 

The first is definitive, and for the total time interval 
considered here this is replaced by ak/aZ = 0 at some large 
enough depth; the second condition implies no agitation at 
the water surface, a condition which indeed may not apply. 

It is convenient but not essential to nondimensionalize the 
equations. This was done, however, by defining the distance 
Z* to be such that g&T, - T2)(Z*)3/va = 1 where T, is 
selected as the maximum temperature of the initial distri- 
bution, Tsi, and T2 as temperature lower than any tempera- 
ture to be realized during the period over which the solution is 
to be applied (here we have used the surface temperature 
measured by Viskanta and Parkin [l] at t = 210 s). Thus we 
have 

T-T, 
i;=- 

I=,-T2’ 

z- =$, 

f=” 
a’ 
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DZ*4 
DC-- 

c? ’ 

LA, 

&ta 
.z*= 

and 

4oz* 
4o = (T, - TJK’ 

The equations and boundary conditions then become 

D = &R/=/i 

c,E1'2 i 
EX - 

Pr, 

Pa) 

(64 

with the boundary conditions 

atZ=O as Z + K 

& = (1 +&)g -T = T, 

k = 0 (and therefore K” is zero) F=O 

The mixing length was assumed to be 
- - 

I= c,Z 0 < Z < Z(T,,,) 

l(Tm,,)-T 
- - 

Z-Z(T,,,) - - 

1 V mm,) = Z,-Z(T,,,) 
Z(T,,,)<Z<Z,. (7) 

Here z,is the depth at which i = 0. On this basis the 
choice for Z, is somewhat uncertain. It probably would best 

be taken as the depth at which the ratio T-T,/T, -T, 
attains some relatively small value. This was not done in the 
present numerical solution, as is explained later. 

3. SOLUTION 

The solution was done numerically by an explicit finite 
difference scheme. Before discretization, the transport terms 
were written in the forms 

This modification was necessary because of the large 
spatial variation of the eddy diffusivity. (8) 

The initial condition for the energy equation was the 
experimental temperature at t = 0, the moment of the 
exposure of the pool to the cold plate. The calculation was 
carried out to the time 210 s, the last for which a temperature 
profile was reported. The problem parameters were set as T, 
= the surface temperature at t = 0,22.556”C and T, = the 
surface temperature at t = 21Os, 19.941”C. Using the 
properties ofwater at 2O’C there is obtained Z* = 0.0145 cm. 

and with d so-determined, the eddy diffusivity for kinetic 
energy is 

_ C,C,EZ 
Elr - 

PrJ 

and 

The surface heat flux reported by Viskanta and Parkin was 
approximated as 

c, c*lP 
& = -. 

PrDD 

& = 1.16x lo-‘t O<t<202, O<t<30s The value of b was taken to be zero at the surface and 

= 2.34 x 10-3+9.73 x 10-s (t-202) 

202<t<403, 30<t<60s 

=2.20x lo-‘+3.24x 10m6(t-403), r>403, t>60s. 

The initial kinetic energy was taken to be zero. 
With the initial condition specified, the problem can be 

solved when the constants are specified. The values used were 

c, C2 CA Pr,, Pr, 

0.5 0.125 0.40 0.59 1 .o 

0.5 0.125 0.10 0.59 1.0 

Constants C’, and C, are the values commonly used. They 
lead to I = 0.42 when in a fow system the production is taken 
equal to the dissipation. The value of 0.59 for Pr,, can be 
considered typical of conditions far removed from fixed 
boundary. The value of 1.0 for Pr, is lower than the value of 
Pr, = 1.7 usually associated with shear flows. 

4. RESULTS FOR THE ONE-EQUATION MODEL 

Using the initial condition as specified in Section 3, and C’, 
= 0.10, there were obtained the results shown on Figs. 1 and 
2. Figure 1 gives T as a function of 2, with auxiliary scales 
showing the temperature in “C and the depth in cm. The solid 
curves show the temperature distribution measured by 
Viskanta and Parkin for various values of ‘r’ in seconds. The 
points show the prediction of the one-equation model for 
these times, and the predictions are always higher than the 
experimental values, the greatest deviation being for 120 s. 
where the greatest difference is 0.3O”C. Implicitly, the pre- 
dicted eddy diffusivity is too large. 

Figure 1 shows by dashed curves the prediction made by 
Viskanta and Parkin by the method of Section 4. For it they 
took as the initial temperature distribution the experimental 
values at t = 90s; their predicted temperatures are lower 
than the experimental values. Generally, and somewhat 
closer to them, are the present results for the one-equation 
model. 

Figure 2 shows the eddy diffusivity distribution, the points 
being those for the one-equation model and the curves the 
predictions from Viskanta and Parkin. The latter are much 
greater and this accounts for the trend of the temperature 
predictions for the two models as they are shown on Fig. I. 

5. TWO-EQUATION MODEL 

As a matter of interest a two-equation model was also 
applied, to eliminate the need for a separate specification of 
the mixing length, at the expense of the need for the 
assumption of additional constants. The two-equation model 
consists of the equation for turbulent kinetic energy and the 
equation for dissipation. The equation for dissipation func- 
tion ‘D’ for the situations of no means velocities as given by 
Launder [2] is 
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Frc;. 1. Temperatures predicted by the one-equation model. FIG. 2. Eddy diffusivities. Solid curves represent the eddy 
Solid curves are the data of Viskanta and Parkin [ 11. Dashed diffusivities as calculated by Viskanta and Parkin El]. Points 
curves are the prediction of Viskanta and Parkin. The points, represent the eddy diffusivities obtained in the present 
identified on the figure, show the predictions for C3 = 0.10. calculations. 

dd/dZ = 0 at the greatest depth. Initially, at t = 0, D should 
be zero but a small value was assigned thereto to avoid the 
singularities associated with equation (ll). a 0 

a 02 0.L 06 08 10 7 

The additional constants, beyond those needed for the one- 
equation model, are Pr, C, and C,. The values used here are 
those that have resulted in the relatively successful prediction 
of steady-state temperature and turbulent kinetic energy 
distribution (Kaviany [3]) as measured by Deardorff and 
Willis [4]. These values are modifications of those specified 
by Launder [2], and the complete set is given by the first row 
of the following table. The second row gives constants 
specified by Behnia and Viskanta [5] for a successful 
prediction for the transient temperature distributions in a 
pool of water heated from below. 

20 029 

LO 058 

60 087 

Figure 3 gives the predicted temperature distribution in the 
same format as Fig. 1. The distribution for 90s gives 
temperatures slightly above the experimental values; at 120 s 
the excess is substantial, at 210s there is a considerable 
departure for 2 <: 40 and there is the implication of an 
excessive eddy diffusivity near the surface. The eddy diffu- 
sivity was too large because the dissipation was too small. A 
decrease in the value of C, decreases the dissipation, thus the 
use of a lower value of C,, such as used by Viskanta and 
Behnia, would not help resolve the discrepancy evident in 
Fig. 3. 

80 118 

100 165 

120 1% 

140 203 

As a trial, C, = 1.55 was used. and the resulting eddy 
diffusivjty became smaller. The results for C, = 1.55 are also 
shown in Fig. 3 only for the time of 210 s. The value of Cs was 
kept the same as before, i.e. 1.9. The temperatures so 
predicted are closer to the experimental values near the 
surface but depart more near the maximum temperature. 

160 2 32 

180 2.61 
7 zkml 

200 205 210 215 22.0 225 TPc 1 

6. CONCLUSION 

A single equation model of the turbulence, together with a 
rather arbitrary specification of the distribution of a mixing 

FIG. 3. Temperatures predicted by the two-equation model. 
Solid curves represent the experimental results of Viskanta 
and Parkin [l]. Points give the results of the present 
calculation for r=90, 120 and 210s for C,=1.42 and for 

210s for C, = 1.55. 
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length, has been shown to give a relatively adequate pre- 
diction of the transient temperature history in a pool of water 
cooled at its upper surface. The predictions are comparable to 
those made by Viskanta and Parkin by the use of a more 
empirical specification of the eddy diffusivity itself. 

A two-equation model was applied to eliminate the need 
for the arbitrary specification of the mixing length. With it, 
and the constants initially chosen, the predicted temperatures 
are for short times about as good as those obtained from the 
one-equation model, but the relatively fast development of 
the eddy diffusivities makes the predictions for longer times 
inferior to those obtained from the one-equation model. An 
increase in the value of the constant in the dissipation term 
did reduce the eddy diffusivity to a more acceptable magni- 
tude but its distribution was such that the temperature 
distribution was not in good agreement with the experiment 
except near the surface. 
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